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fraction of the clonal cell population can

survive because of non-genetic cell-to-

cell variability. We present fate-seq, a

method to determine the molecular
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transcriptomic profiles of predicted

resistant versus predicted sensitive cells,

before treatment induces confounding

changes.
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SUMMARY
Non-genetic heterogeneity observed in clonal cell populations is an immediate cause of drug resistance that
remains challenging to profile because of its transient nature. Here, we coupled three single-cell technologies
to link the predicted drug response of a cell to its own genome-wide transcriptomic profile. As a proof of prin-
ciple, we analyzed the response to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) in HeLa
cells to demonstrate that cell dynamics can discriminate the transient transcriptional states at the origin of
cell decisions such as sensitivity and resistance. Our same-cell approach, named fate-seq, can reveal the
molecular factors regulating the efficacy of a drug in clonal cells, providing therapeutic targets of non-genetic
drug resistance otherwise confounded in gene expression noise. A record of this paper’s transparent peer
review process is included in the Supplemental Information.
INTRODUCTION

Isogenic cell populations exhibit multiple scales of non-genetic

heterogeneity, from gene expression to phenotypic response.

Clonal cells in the same phenomenological state, such as cell cy-

cle or differentiation stages, can still respond differently to the

same stimulus (Purvis et al., 2012; Spencer et al., 2009). A com-

mon hypothesis for this cell-to-cell phenotypic heterogeneity is

the co-existence, within isogenic cell populations, of different

cellular states that arise from stochasticity in the biochemical re-

actions controlling molecules biosynthesis and degradation (Ba-

lázsi et al., 2011; Elowitz et al., 2002; Loewer et al., 2013; Raj and

van Oudenaarden, 2008). These processes generate biological

noise that can facilitate cell decisions such as growth, adapta-

tion, cell proliferation, differentiation, and drug response, in a

non-genetic fashion, yet constant and apparently regulated (Al-

beck et al., 2013; Mitchell et al., 2018; Purvis et al., 2012; Saint

et al., 2019; Santos et al., 2007; Spencer et al., 2009; S€uel

et al., 2006).

In addition, non-genetic heterogeneity has also been linked to

tumor formation—cell evading apoptosis—and incomplete

eradication of tumor clones (Marusyk et al., 2012; Reyes and La-

hav, 2018). Recent studies including ours have shown that the

incomplete response to cancer therapeutics (fractional killing)

is due to differences in cell response dynamics (Paek et al.,
Cell Systems 11, 367–374, Octo
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2016; Roux et al., 2015). Heterogeneous cell signaling dynamics

play a significant role in the efficacies of many cancer drugs

where most of the ‘‘sensitive cell lines’’ still respond partially at

the population level, with only a fraction of cells undergoing

apoptosis at saturating doses (Fallahi-Sichani et al., 2013; For-

cina et al., 2017). Even after repeated rounds of drug challenges,

drug-tolerant persister cells have been shown to mediate this

fractional killing, suggesting that the same individual cell can

switch between opposing phenotypic responses (Flusberg

et al., 2013; Sharma et al., 2010; Su et al., 2017). Phenotypic

switching, a survival strategy without de novo mutation (Acar

et al., 2008), is a form of drug evasion that has been shown to

lead to genetic drug resistance, ultimately accounting for cancer

therapeutic failure (Ramirez et al., 2016; Shaffer et al., 2017;

Sharma et al., 2010). Thus, understanding the molecular basis

of this drug response phenotype switching at the single-cell level

has implications for cancer therapeutic development (Salgia and

Kulkarni, 2018). Death receptor agonists, such as tumor-necro-

sis-factor-related apoptosis-inducing ligand (TRAIL), are excel-

lent models for studying the origins of drug response heteroge-

neity, as they were proven disappointing in clinical trials due to

fractional killing, evidenced by a low maximum drug effect

(Emax) (Gonzalvez and Ashkenazi, 2010; Holland, 2014). Howev-

er, identifying the molecular determinants of drug response het-

erogeneity has been impaired by the technical and analytical
ber 21, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 367
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Constant Proportioning of Cell Response Heterogeneity Enables Stable Predictive Metrics of Drug Response for Phenotype-
Coupled Same-Cell Profiling: Fate-Seq

(A) Clonal expansion and drug selection reveal the plasticity of drug response phenotypes in isogenic cells. For clonal expansion: single-cell clones were obtained

by limiting dilutions of the HeLa parental cells. For drug selection: parental HeLa cells were treated with TRAIL (25 ng/mL for 15 h). The surviving cells from the first

treatments were allowed to regrow for 72 h. Once the surviving cells and the sub-clones had regrown into new cultures (72 h and 3weeks, respectively), they were

all treated with TRAIL at several doses, and their responses were compared with the parental cells. One representative dose response profile is shown for both

clonal expansion and drug selection experiments. Bar graphs represent cell viability from at least three biological repeats of both clonal expansion and drug

selection experiments. Cell viability was assessed 15 h post-treatment by CellTiter-Glo, and the absorbance is represented in percent of control relative to cell

population treated with TRAIL-vehicle, data are represented as mean ± SD.

(B) Single-cell trajectories of FRET ratio reporting caspase-8 activity. Live-cell microscopy experiments (> 10 h) were performed to establish the caspase-8

dynamics predicting the ultimate cell fate after treatment with TRAIL (25 ng/mL in HeLa cells stably expressing the FRET biosensor IC-RP; Albeck et al., 2008).

One representative experiment of 143 tracked cells is presented.

(C) The caspase-8 activation rate (time derivative of FRET ratio, dFRET ratio/dt; Roux et al., 2015) after TRAIL stimulation is calculated of for each single cell: we

found a time after treatment (50 min) at which caspase-8 activation rate could accurately predict the ultimate cell response at the end of the experiment, using

constant thresholds (colored lines; measured in at least three experiments). The star indicates the top 4 predicted cells of each group that can be processed in

fate-seq (Figure 2). The cell fate prediction being done after 50-min TRAIL stimulation limits gene induction (Figure S1B) and allows to isolate the sensitive cells

that would otherwise die.

(D) Example live-cell microscopy experiment for caspase-8 early activation measurement in each identified cell. 50-min live-cell microscopy experiment was

performed to collect caspase-8 dynamics for each cell cultured on amembrane ready for micro-dissection. About 20 fields of cells are monitored, and all cells are

tracked for their FRET signal in time.

(E) Single-cell trajectories of FRET ratio are reported for each cell tracked to perform the fate prediction based on their caspase-8 activation rate (dFRET ratio/dt)

50-min post-TRAIL treatment (25 ng/mL, see Figure 1C). One representative experiment of 158 tracked cells is presented. Red and blue trajectories with green

dash lines were predicted sensitive and predicted resistant cells, respectively. Note that a single measure of the FRET ratio at 50 min would not be sufficient to

(legend continued on next page)
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impediments of multimodal single-cell approaches. Indeed,

measuring signaling dynamics or phenotypic response and

global gene expression profiles in the same cell has been tech-

nically challenging, not to mention that drug treatment itself

either deteriorates the integrity of sensitive cells or induces an

associated genomic response. Targeted CRISPR screens

(Adamson et al., 2016; Datlinger et al., 2017; Dixit et al., 2016;

Jaitin et al., 2014; Rubin et al., 2019) have opened up opportu-

nities to same-cell studies with the caveat that each factor cho-

sen to be targeted has its own cell line that will differ from the

parental cells prior the phenotype assessment (limiting the mo-

lecular targets examined and subjecting the measured cells to

some of the biases of genetic reprogramming). As a conse-

quence, the relationship between global -omic signatures and

phenotypic measures has stayed mainly correlative.

To overcome these limitations, we designed a workflow

coupling three single-cell technologies: we used a predictive

measure of single-cell response by live-cell microscopy, in order

to isolate predicted sensitive and predicted resistant cells by

laser-capture microdissection and then profiled each captured

cell by single-cell RNA sequencing directly (with no cell dissoci-

ation, sorting, nor microfluidics handling). This allowed to deter-

mine in the same cell, the genome-wide transcriptomic profile at

the mechanistic origin of cellular drug response and establish as

a proof of principle, a single-cell functional signature of TRAIL

therapeutic efficacy.

RESULTS

Single Cells Perpetuate Population Heterogeneity in
Constant Proportions, Providing Features for Cell Fate
Prediction
Phenotypic switching, which implies unstable phenotypes at the

level of each single cell, makes it difficult to associate cell profiles

to their future drug response phenotypes. To first evaluate the

stability (interconversion property) of the two drug response phe-

notypes observed within a clonal HeLa cell population treated

with TRAIL (cell death or survival), we performed several rounds

of clonal expansion and drug selection. HeLa cells were either

sub-cloned into new cultures or treated with TRAIL at around

their IC50 (25 ng/mL) to put the non-responding cells into new

cultures. We found that cells derived from clonal expansion or

drug selection of parental HeLa cells could produce new cell

populations of similar and constant drug response profiles,

regardless of the cell clone or their response phenotype to the

first drug treatment (Figure 1A). Although this observed non-ge-

netic resistance is transient, with cells switching phenotypes, we

found that each cell could perpetuate the drug response hetero-

geneity of the population, in constant proportions.

While the potential fate of a cell is unstable, we had previously

shown that it is correlated with the initiator caspase (caspase-8)

maximal activity during the course of TRAIL treatment (Roux

et al., 2015). (However, the maximal caspase-8 activity is

reached at cell death for the sensitive cells, which had defied
determine the cell fate, as the basal activity ratio differs between untreated ce

predictive metric is based on the time derivative of the FRET ratio, which require

(F) Each cell has been tracked so to allow the same cell to be phenotyped in live-ce

cell RNA-seq. Two to 8 single-cells were captured and sequenced per fate-seq
its use as a predictive measure to assess cell fate upon treat-

ment.) With the proportioning of the cell responses being con-

stant at the population level, we sought to evaluate in each

cell, the caspase-8 activation rate systematically after drug addi-

tion and associate it with the cell response phenotype at the end

of the experiment (dying or surviving cell). By doing so, we found

that caspase-8 activation rate at 50 min post-treatment was a

robust predictor of cell fate for the most differing cells (Figures

1B and 1C). We, thus, could define two thresholds (sensitive

and resistant) that were constant between training experiments

and with which the prediction could accurately classify the

response phenotype of the cells (Figure 1C), at a time after TRAIL

treatment where no significant change was induced at the tran-

scriptomic level (Figure S1), and no cell had yet executed

cell death.

Although there was no transcriptomic change detectable after

a short TRAIL treatment, we sought to verify whether some gene

expression variability between the 50-min TRAIL-treated cells

could indicate their response phenotypes. We analyzed 3,000

single cells—resting and 50-min TRAIL-treated cells, using the

10X platform (10X Genomics B.V., the Netherlands): after re-

gressing out the cell-cycle component, we could not identify pre-

existing cell-to-cell differences in genes of the TRAIL-signaling

pathway that would recapitulate the constant fractional

response (Figures S1A–S1D). Although isogenic populations

contain cells in different states (such as the different phases of

the cell cycle), classic single-cell RNA sequencing could not

discriminate drug-sensitivity or -resistance states, because of

the lack of known gene markers to identify these clusters.

Together, these experiments showed that although the

response of a cell may switch between resistant and sensitive,

there is no emerging feature in their global transcriptomic state

that can help detecting these different cell states. However, we

show here that early caspase-8 activation rates can predict the

ultimate cell response of the most differing cells, which could

be used to enrich these rare cell groups prior to sequencing

and establish the markers of drug efficacy.

Single-Cell Response Prediction Coupled to Same-Cell
Isolation In Situ

The measured gene expression variability of isogenic cells has

been so far referred to as gene expression noise (unstructured

variability; Eling et al., 2019) instead of an observable signal,

in part because of the lack of prior knowledge on the different

states of a cell, such as the drug-sensitivity states. To address

this issue, we designed a same-cell functional pharmacoge-

nomics approach that couples the prior knowledge of the cell

phenotypic state (predicted cell fate) to the transcriptomic pro-

file of the same cell: fate-seq (Figures 1D–1F). Predicted cell fate

is determined with the response dynamic profile of each cell

monitored by live-cell microscopy: in each experiment �150

cells were imaged and tracked for 50 min post-TRAIL treatment

to perform cell fate predictions. Cells that showed a definitive

commitment based on their caspase-8 activation rate (as cells
lls (normalization to the same cell at time 0 must be done), and because the

s two consecutive measures of the same cell in time.

ll microscopy, isolated by laser-capturemicrodissection and profiled by single-

experiment.

Cell Systems 11, 367–374, October 21, 2020 369



A

B

C

E

F H

IG

D

Figure 2. Fate-Seq Recovers a Drug-Efficacy Gene Signature fromUnstructured Variability: Profiling TRAIL Response as a Proof of Principle

Cells selected based on their predicted phenotype 50-min post-TRAIL treatment (25 ng/mL) were assayed by single-cell RNA sequencing.

(A) Principal component analysis of the single-cell RNA-seq. Each dot represents a cell colored by its predicted phenotype. ‘‘High’’ refer to cells in (B).

(B) TRAIL sensitivity signature of HeLa cells: hierarchical clustering of genes (FDR < 0.1 and |log2(FC)| > 2) from selected cells highlights the heterogeneity of

cancer drug response information contained in isogenic cells treated together. ‘‘High’’ and ‘‘low’’ refer to the cell identifier in dataset.

(C) Volcano-plot: x axis represents the difference in average gene expression between predicted sensitive and predicted resistant cells (log2 scale). y axis

represents the FDR (�log10 FDR). Red dots represent the gene candidates for functional validations.

(D)MA-plot: x axis represents the average gene expression for each gene (log2 CPM + 1). y axis represents the difference in gene expression between predicted

sensitive (high) versus predicted resistant cells (low), log2 scale. Red dots represent the gene candidates for functional validations.

(legend continued on next page)
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in starred-brackets Figure 1C) were captured by laser microdis-

section. With this, the predicted sensitive and predicted resis-

tant cells that had been cultured in population could be directly

isolated in situ without dissociation, immediately lysed and pro-

cessed individually (one cell per tube). Barcoded cells from

several experiments were then pooled for multiplexed single-

cell RNA sequencing (Figure S2; QC metrics in Table S1). Since

lost cells, debris, or captured doublets could not be checked by

visual inspection once catapulted in the tube, stringent exclu-

sion criteria were used after sequencing, based on UMI counts

and dropout rates, supplying 19 cells for further analysis (from

54 cells collected in 8 experiments).

The devised predictive measure is of particular interest

because (1) it allows to determine accurately the response

phenotype of a cell before drug stimulation could induce major

confounding changes in its transcriptomic profile (as shown in

Figure S1B) and because (2) it allows to recover both resistant

and sensitive cells, while other analyses can only compare resis-

tant cells to an untreated sample. By coupling the prediction of a

cell response to transcriptomic profiling of the same cell, fate-

seq should provide a link between a cell molecular state and

its resulting phenotype, with cell signatures of drug efficacy.

Fate-Seq Reveals a Drug Sensitivity Signature within
Gene Expression Variability
We first validated by principal component analysis and unsuper-

vised hierarchical clustering that predicted sensitive and resis-

tant cells to TRAIL did not cluster in separate regions of the first

two principal components landscape (Figure 2A) and that the

clustering was not linked to the presence of confounding factors

such as batches of single-cell collections, cell-cycle phase pre-

diction, or even predicted phenotype (Figure S3A). These results

confirmed that although the cell fate decision was already deter-

mined for these cells, their potential expression difference was
(E) Pharmacological validations of top target gene DNM1L using co-treatment w

Mdivi-1 (25 mM) in combination or not with TRAIL treatment (25 ng/mL) in parenta

the 10-h representative experiment shown (controls shown in Figures S5E and S5F

of the same representative experiment. Survival curves: cell death times of each

assessment in live-cell microscopy). Bar graphs: average cell surviving fraction

determined by morphology assessment) for 2 experimental repeats (547 cells w

(F) Functional validations of top differentially expressed gene SIVA1, using engine

upon treatment with TRAIL (25 ng/mL) performed by live-cell microscopy experim

cells expressing IC-RP. Control cells (mRFP1) are IC-RP parentals, overexpressi

rate of each cell for each condition of one representative experiment where 276 ce

representative experiment (event determined bymorphology assessment in live-c

cell microscopy experiments (10 h, dead cell counts determined bymorphology a

represented asmean ± SEM. Clonogenic assays: one representative experiment o

1 week after a 24-h treatment with TRAIL (250 ng/mL).

(G) Average clone area fraction from at least three clonogenic assays for each c

BLOC1S1, PRSS56, SLC25A1, and SIVA1 compared with IC-RP parentals overex

plates, 1 week after a 24-h treatment with TRAIL (250 ng/mL), were photographed

data are represented as mean ± SD.

(H) Functional validations of top differentially expressed gene DNM1L, performe

maximal caspase-8 activation rate of each cell for each condition of one represent

of each condition in the same representative experiment (event determined by m

viving fraction at the end of the live-cell microscopy experiments (10 h, dead ce

(1,017 cells were tracked in total), data are represented as mean ± SEM. Clonog

(I) Diagram of the shortest paths between the target genes that increase cell dea

ceptors; CASP8, caspase-8). For each gene of the TRAIL efficacy signature establ

(variance/mean expression ratio of each gene), and the color gradients are scale

activity threshold (Roux et al., 2015, direct relationship between caspase-8 activ
still confounded within gene expression noise when compared

classically. A hierarchical clustering analysis based on the genes

with the most significant biological variation, highly variable

genes (Lun et al., 2016), could not recover the two predicted

cell response phenotypes either (Figure S3B).

However, by grouping cells based on their predicted response

phenotype, pathway enrichment analyses significantly ranked

functions such as ‘‘cell death and survival’’ (Figure S4), indicating

that we had increased the meaningful expression signal by per-

forming differential expression analysis between our predicted

cell groups. Hierarchical clustering based on themost significant

differentially expressed genes (false discovery rate [FDR] < 0.1

and |log2(FC)| > 2) highlighted the heterogeneity of anticancer

drug sensitivity information contained in identical cells treated

together and revealed the TRAIL-efficacy gene signature in

HeLa cells (Figure 2B; arrows point to the top gene target of

each response category. Differential expression analyses results

provided in Table S2).We then derived a short list of target genes

intersecting on a couple of statistical criteria (minimal FDR,

minimal dropout rate, maximal fold change with sufficiently

high expression levels in both predicted phenotypic responses,

Figures 2C and 2D): top target genes DNM1L and SIVA1 as

well as BLOC1S1, PRSS56, SLC25A1, UBE2D4, and C11orf83

(named UQCC3 hereafter).

To initiate the functional validation of the target genes, we first

used inhibitor drugs for a protein whose gene was highly ex-

pressed in predicted resistant cells. Targeting dynamin-1-like

protein (DRP1), encoded byDNM1L (top gene target found high-

ly expressed in resistant cells, Figures 2C and 2D), we found that

both mdivi-1 and dynasore (DRP1 and dynamins inhibitors,

respectively) could significantly increase TRAIL-induced cas-

pase-8 activity (Figures 2E and S5). In addition, these treatment

combinations with mdivi-1 or dynasore, consequently increased

cell death response compared with TRAIL alone: shortening by
ith inhibitor drugs. Live-cell microscopy experiments evaluating the effect of

l cells expressing IC-RP only. FRET ratio trajectories: 266 cells were tracked in

). Violin plots: maximal caspase-8 activation rate of each cell for each condition

condition in the representative experiment (event determined by morphology

at the end of the live-cell microscopy experiments (10 h, dead cell counts

ere tracked in total), data are represented as mean ± SEM.

ered cell lines: single-cell assessments of caspase-8 activation and cell survival

ents evaluating the effect of overexpressing the target gene in parental HeLa

ng mRFP1 fluorescent protein only. Violin plots: maximal caspase-8 activation

lls were tracked. Survival curves: cell death times of each condition in the same

ell microscopy). Bar graphs: average cell surviving fraction at the end of the live-

ssessment) for 3 experimental repeats (831 cells were tracked in total), data are

f at least 3 experimental repeats of crystal-violet stained cells in 96-well plates,

ell line overexpressing a short-listed target gene UBE2D4, UQCC3 (c11orf83),

pressing mRFP1 fluorescent protein only. Crystal-violet stained cells in 96-well

, and the well area fraction occupied by cell colonies was evaluated in ImageJ,

d by live-cell microscopy experiments as described in (F) above. Violin plots:

ative experiment where 349 cells were tracked. Survival curves: cell death times

orphology assessment in live-cell microscopy). Bar graphs: average cell sur-

ll counts determined by morphology assessment) for 3 experimental repeats

enic assays: same as in (F).

th and caspase-8 on concentric half-circles with dashed lines (DR, death re-

ished in HeLa cells, the size of the colored circle is proportional to its Fano factor

d on its relative effect on caspase-8 activity and on cell death. The caspase-8

ation and cell death) is preserved for each gene.
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2.2-fold the half-life of the cell population and decreasing cell

survival probability below 0.1 (versus 0.32 in control cells, Fig-

ures 2E and S5). A translation inhibitor and an inhibitor for targets

further down the list of differentially expressed genes were used

as positive and negative controls respectively (Figures S6 and

S7, respectively).

We then engineered cell lines to overexpress the shortlisted

genes that were found highly expressed in predicted sensitive

cells: top target gene SIVA1 as well as BLOC1S1, PRSS56,

SLC25A1, UBE2D4, and UQCC3 (c11orf83), all in fusion with

the fluorescent protein mRFP1. Using live-cell microscopy, we

compared each cell line to control cells (established in parallel

but overexpressing mRFP1 only) by monitoring their caspase-8

activation and survival rates after TRAIL treatment; an average

of 850 cells were tracked per gene validation. We also measured

by clonogenic assays, the capacity of drug-tolerant persisters to

produce cell colonies after TRAIL treatment. We found that over-

expression of SIVA1, PRSS56, SLC25A1, UBE2D4, and UQCC3,

all increased significantly the rate of caspase-8 activation induced

by TRAIL (Figures 2F and S8A, these observations confirmed the

validity of the screening criteria). Cell sensitivity to TRAIL was

correspondingly increased in engineered cell lines with these

target genes. In addition, we could also validate a long-termeffect

of these gene perturbations, by showing that all target genes

could significantly reduce the number of colonies produced by

drug-tolerant persisters after a treatment with TRAIL (Figures 2F

and S8A, all quantifications in Figure 2G). Overexpression of

SIVA1 could also increase cell sensitivity to death receptor thera-

peutic antibodies such mapatumumab (IC50 = 0.148 nM versus

0.373 nM in parental cells) and drozitumab (IC50 = 75.4 versus

123.5 ng/mL in parental cells, with anti-Fc antibody cross-linking).

Conversely, as expected, overexpression of DNM1L significantly

decreased caspase-8 activation rate, cell sensitivity to TRAIL and

increased the number of colonies from drug-tolerant persisters

(Figure 2H), further validating the approach. A gene that was

further down the list of differentially expressed genes with no sta-

tistically significant difference, LLPH, was used asoverexpression

control (Figure S8C).

Together these results showed that our same-cell functional

pharmacogenomics approach allowed the identification of a set

of target genes that could both predict and perturb the non-

genetic drug resistance to TRAIL, constituting a drug efficacy

gene signature that differ from drug-induced gene signatures.

DISCUSSION

It is nowpossiblewith the approach described here to recover cell

decision information from unstructured variability in gene expres-

sion (i.e., biological noise) by monitoring the same cell across the

screening from phenotype prediction to single-cell transcriptom-

ics. We demonstrated that this approach reveals the transcrip-

tomic profiles at the mechanistic origin of cell response, as

opposed to the therapy-induced profile in resistant cells. As a

proof of principle, we used this method to uncover a cell sensi-

tivity signature to TRAIL, composed of factors regulating the pop-

ulation response proportioning that gives rise to drug resistance

within a clonal cell population. This set of genes, DNM1L,

SIVA1, BLOC1S1, PRSS56, SLC25A1, UBE2D4, and UQCC3,

could be specifically perturbed to increase cell sensitivity to death
372 Cell Systems 11, 367–374, October 21, 2020
receptor agonists. These genes were found to participate to the

fast phenotypic switching between resistant and sensitive cell

states, due to the natural gene expression heterogeneity of an

isogenic cell population. Clonogenic assays ultimately confirmed

that stabilizing the expression of the identified target genes could

rescue cell sensitivity to the drug with long-term benefits. These

results, therefore, suggest that the method presented here can

identify sets of biomarker candidates as well as co-drugs

improving the pharmacological profiles of primary treatments

that lack efficacies because of cell-to-cell variability within a cell

type or clone. We also observed that the amount of expression

variability of a target gene seemed correlated to its rescue capac-

ity. Indeed, by evaluating the shortest path between the target

genes and caspase-8, we found that at equal distance, the noisier

(highest Fano factor) the expression in parental cells was the

larger the effect a gene overexpression had on caspase-8 activity

and ultimately, cell death (Figure 2I, at similar variability: the longer

the shortest path, the larger the effect). These observations

also support the hypothesis that signaling networks utilize noise

to increase population-level information transfer and regulate

the overall cell population response (Suderman et al., 2017).

With the shortlisted target genes validated to affect the drug

response, our results suggest that same-cell functional pharma-

cogenomics screens, comparing isogenic cells treated together,

are promising methods to reveal regulatory factors and therapeu-

tic targets of non-genetic drug resistance, providing a substrate

for developing the tools of rationale combination therapy in sys-

tems pharmacology.

Since transient non-genetic resistance is not stably inherited in

sister cells (as opposed to epigenetic phenotypes [Dawson,

2017]), classic single-cell multimodal analyses of induced or

inherited factors (Bell et al., 2019; Kim et al., 2018) remained inap-

propriate to study the molecular determinant of transient resis-

tance, where each single-cell can give rise to an equally heteroge-

neous cell population, invariably exhibiting the same drug

response heterogeneity. With our approach, however, we started

to address the long-standing question on how heterogeneous cell

states can inform cell decision, by applying the method to cancer

drugs transient resistance. Indeed, the question whether a cell

can evade cancer treatment thanks to preexisting cellular state

differences, remains unanswered owing to a fundamental limita-

tion: the latency of the cell fate decision (the cell decision is only

observable at the time when sensitive cells disappear and resis-

tant cells emerge with an induced-genomic profile). A key aspect

here is to use predictions of drug response in order to preserve all

cells in the population; this allowed the analyses of responding

versus non-responding cells within the same drug-sensitive pop-

ulation at a nearly naive transcriptional state. By studying single

cells together, comparing cell response within the same popula-

tion and acquiringboth the responsepredictionwith the transcrip-

tomic profile of the same cell, our approach reveals cell decision

information otherwise confounded by gene expression noise

within or between cell samples.

As clinical assessment of sub-clonal heterogeneity becomes a

relevant information during cancer diagnosis (Karaayvaz et al.,

2018), the cellular mechanisms that regulate the cell states within

a tumor clone (drug responding and non-responding states) will

be critical for cancer drug development. Here, we propose a

multimodal profiling methodology to pair a non-destructive
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measurement, such as a pharmacological profile, to single-cell

RNA sequencing. Unlike other single-cell multimodal profiling

methods using microfluidics (Lane et al., 2017) or fluorescent-

activated cell sorting (FACS, the most widely used solution;

Stuart and Satija, 2019), our approach allows repeatedmeasure-

ments of the same cell in population and in situ to gather predic-

tive drug response dynamics before the destructive assay. The

framework, therefore, enables the identification ofmolecular fac-

tors causing in the incomplete response of sensitive cell types to

cancer therapeutics (rather than induced factors). With the field

of dynamic biomarkers growing rapidly (Liu et al., 2019), this

framework is amenable to all multi-omics methods to isolate sin-

gle cell based on their drug response profile and reveal sets of

biomarkers or networks of molecular factors that can readily

be targeted to improve the pharmacological profiles of primary

treatments impaired by cellular heterogeneity.
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Méditerranéen de Médecine Moléculaire (C3M/INSERM 1065). Single-cell

RNA sequencing was performed by UCAGenomiX, a partner platform of the

National Infrastructure France Génomique (ANR-10-INBS-09-03 and ANR-

10-INBS-09-02), with support from Conseil Départemental des Alpes Mari-
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

A0251 anti-human Hashtag 1 Antibody Biolegend cat# 394601

A0252 anti-human Hashtag 2 Antibody Biolegend cat# 394603

A0253 anti-human Hashtag 3 Antibody Biolegend cat# 394605

A0254 anti-human Hashtag 4 Antibody Biolegend cat# 394607

A0255 anti-human Hashtag 5 Antibody Biolegend cat# 394609

ANTI-DR5 (PRO95780 (DROZITUMAB)) HUMAN IGM Interchim cat# AB00740-15.0

Mapatumumab Creative biolabs cat# TAB-H48

AffiniPure F(ab’)₂ Fragment Donkey Anti-Human IgG,

Fcg fragment specific

Jackson ImmunoResearch

Europe Ltd

RRID: AB_2340485, cat# 709-006-098

Bacterial and Virus Strains

pQCXIX (retroviral vector) Clontech Takara Bio cat# 631515

pQCXIX mCherry (retroviral vector) this manuscript N/A

pQCXIX mCherry-DNM1L (retroviral vector) this manuscript N/A

pMSCV-pBabeMCS-IRES-RFP (retroviral vector) Addgene RRID: Addgene_33337

pMSCV-BLOC1S1-IRES-RFP (retroviral vector) this manuscript N/A

pMSCV-LLPH-IRES-RFP (retroviral vector) this manuscript N/A

pMSCV-PRSS56-IRES-RFP (retroviral vector) this manuscript N/A

pMSCV-SIVA1-IRES-RFP (retroviral vector) this manuscript N/A

pMSCV-SLC25A1-IRES-RFP (retroviral vector) this manuscript N/A

pMSCV-UBE2D4-IRES-RFP (retroviral vector) this manuscript N/A

pMSCV-UQCC3-IRES-RFP (retroviral vector) this manuscript N/A

Chemicals, Peptides, and Recombinant Proteins

Cycloheximide R&D Systems Europe cat# 0970

Dynasore ENZO Life Science cat# ALX-270-502

Mdivi-1 ENZO Life Science cat# BML-CM127

Hoechst 33342 dye Thermo Fisher Scientific cat# H3570

Recombinant human (rh) TRAIL R&D Systems Europe cat# 375-TEC/CF

Tin protoporphyrin IX dichloride R&D Systems Europe cat# 0747

Critical Commercial Assays

Master Mix Fast SYBR green Thermo Fisher Scientific cat# 4385618

CellTiter-Glo Luminescent Assay Promega cat# G7570

Chromium Single Cell 3’ Reagent Kit, V2 Chemistry 10X Genomics cat# 120237

RNeasy kit Qiagen cat# 74106

High-Capacity cDNA Reverse Transcription Kit Thermo Fisher Scientific cat# 4368813

Deposited Data

10X Genomics, RNA sequencing processed data files this manuscript Mendeley data Dataset: https://doi.org/

10.17632/m289yp5skd.1

Fate-seq differential analysis results (edgeR) this manuscript Table S2

10X Genomics differential analysis results from the

pseudo-bulk analyses (TRAIL time, dose)

this manuscript Table S3

fate-seq RNA sequencing raw data GEO, GSE138832 this manuscript https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE138832

10X Genomics, RNA sequencing raw data GEO, GSE138833 this manuscript https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE138833

(Continued on next page)

Cell Systems 11, 367–374.e1–e5, October 21, 2020 e1

https://doi.org/10.17632/m289yp5skd.1
https://doi.org/10.17632/m289yp5skd.1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138832
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138832
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138833
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138833


Continued
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Experimental Models: Cell Lines

HeLa IC-RP, mCherry (human) this manuscript N/A

HeLa IC-RP, mCherry-DNM1L (human) this manuscript N/A

HeLa IC-RP, RFP (human) this manuscript N/A

HeLa IC-RP, BLOC1S1, RFP (human) this manuscript N/A

HeLa IC-RP, LLPH, RFP (human) this manuscript N/A

HeLa IC-RP, PRSS56, RFP (human) this manuscript N/A

HeLa IC-RP, SIVA1, RFP (human) this manuscript N/A

HeLa IC-RP, SLC25A1, RFP (human) this manuscript N/A

HeLa IC-RP, UBE2D4, RFP (human) this manuscript N/A

HeLa IC-RP, UQCC3, RFP (human) this manuscript N/A

HeLa IC-RP (human) (Roux et al., 2015) N/A

Oligonucleotides

Target gene primers for qPCR this manuscript Table S7

Cell ID barcodes this manuscript Table S4

Isolated single cell library primers this manuscript Table S5

Target gene primers for cloning this manuscript Table S6

Software and Algorithms

Ingenuity Pathway Analysis (IPA, QIAGEN Inc). QIAGEN Inc https://digitalinsights.qiagen.com/

R code for RNA sequencing data analyses this manuscript Github repository: https://github.com/

jrxlab/fate-seq_proc

STAR (Dobin et al., 2013) v2.4.0a

Drop-seq tools (Macosko et al., 2015) v1.0

ImageJ https://imagej.nih.gov/ij/ v1.5.2

Fiji https://fiji.sc/ v2

Cell Ranger Single-Cell Software Suite 10X Genomics v3.0.2

R https://www.r-project.org/ v3.6.1
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jeremie

Roux (jeremie.roux@univ-cotedazur.fr).

Materials Availability
Plasmids and cell lines generated in this study are available from the Lead Contact upon request, with an MTA when required.

Data and Code Availability
10X Genomics RNA sequencing processed data files have been deposited to Mendeley Data (https://doi.org/10.17632/

m289yp5skd.1). Fate-seq RNA sequencing and 10X Genomics raw data can be accessed on GEO (accession # GSE138832 and

GSE138833 respectively): https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138832, https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE138833.

R code for RNA sequencing data analyses is available at: https://github.com/jrxlab/fate-seq_proc.

EXPERIMENTAL MODEL

HeLa cells (derived from human, female cervix adenocarcinoma) were obtained from the ATCC and cultured in DMEM Glutamax

supplemented with 10% fetal bovine serum and penicillin/streptomycin (Thermo Fisher Scientific, France) or in phenol red-free

DMEM Glutamax supplemented with 10% fetal bovine serum and penicillin / streptomycin (Thermo Fisher Scientific, France) during

live-cell imaging. The parental cells and its derived subclones and engineered cell lines tested negatively for mycoplasma

contamination.
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Plasmids and Cloning
mRFP1 versions of BLOC1S1, DNM1L, LLPH, PRSS56, SIVA1, SLC25A1, UBE2D4, UQCC3 (C11orf83) were constructed by PCR

from ORF Clones in pcDNA3.1+/C-(K)-DYK vectors (GenScript Biotech B.V., Netherlands) or from mCh-Drp1 (a gift from Gia

Voeltz (Friedman et al., 2011), Addgene plasmid # 49152), all with mRFP1 in position 2 after the IRES (transcriptional fusion) in

pMSCV-pBabeMCS-IRES-RFP (a gift from Martine Roussel & Charles Sherr , Addgene plasmid # 33337) and in pQCXIX (Clontech

Takara Bio, France). Primers for subcloning can be found in Table S6.

Cell Line Constructions
HeLa cells stably expressing IC-RP (Roux et al., 2015) were used for all cell lines constructions, freshly cloned cells were used in all

experiments (below passage 10). BLOC1S1, DNM1L, LLPH, PRSS56, SIVA1, SLC25A1, UBE2D4, UQCC3 (C11orf83) with mRFP1

cells (transcriptional fusion) were obtained by infection with retrovirus (Retro-X system, Clontech Takara Bio, France) of the respec-

tive mRFP1 fusion gene into the parental clone of HeLa IC-RP cells. After infection, positive cells were enriched by FACS sorting but

not sub-cloned to avoid the selection of a particular clone and to allow the emergence of a population of cells expressing various

amount of each mRFP1 tagged protein.

Quantitative PCR
Cells were washed twice with cold PBS, lysed and frozen in Trizol (TR-118; Euromedex, Souffelweyersheim, France). RNA was

extracted using a RNeasy kit (74106, QIAGEN Inc). RNA concentration was determined by measuring absorbance at 260/280 nm.

RNA was reverse transcribed to cDNA using High-Capacity cDNA Reverse Transcription Kit (4368813; Thermo Fisher Scientific,

France). Quantitative PCR was performed with 50 ng cDNA, 500 nM primer, and Master Mix Fast SYBR green (4385618; Thermo

Fisher Scientific, France). Primers are listed in the Table S7.

Cell Viability
Viable cells were determined using CellTiter-Glo� Luminescent Assay (Promega, Madison, USA) or directly counted using Hoechst

stain. Briefly, 23103 cells/well were added to the 96-well plate before being treated 24 hr later with TRAIL in a DMEM medium sup-

plemented with 10% of FBS. After 15 hours of TRAIL treatment, the CellTiter-Glo� buffer and substrate, but also the 96-well plate

were all equilibrated to room temperature prior to use. Buffer and substrate were mixed and a volume equal to the volume of cell

culture medium present in each well, was directly added to the plate. The plate was then mixed on an orbital shaker to induce

cell lysis and finally read with a luminometer (2104 EnVision�Multilabel Plate Reader, PerkinElmer). For Hoechst staining, a final con-

centration of 2.5 mg/ml Hoechst 33342 dye (Thermo Fisher Scientific, France) was added after the TRAIL treatment, to each well and

incubated for 15 min in the dark at 37�C. Finally, the viability was quantified on images acquired with a fluorescence microscope

(EVOS FL, AMG with 10x magnification), using Fiji software.

Clonogenic Assays
Cells were plated on a 96-well plate. After 24h, there were treatedwith a saturating dose of TRAIL (250ng/mL) and let grown for colony

formation. After one week medium was removed and wells were washed with PBS. Colonies were both fixed and stained with a so-

lution of 3.7% paraformaldehyde and 0.5% crystal violet in phosphate-buffered saline (PBS, pH 7.2) for 30 minutes, then washed

three times with PBS. The 96-well plate was kept at room temperature and quantified using Fiji software.

Live-Cell Microscopy
Clonal HeLa cells stably expressing the FRET-based initiator caspase reporter (IC-RP) were seeded into FrameSlides PET (Carl

Zeiss, France) or 96-well plates, coated with rat-tail collagen I (Thermo Fisher Scientific, France). Cells in phenol red-free DMEMGlu-

tamax supplemented with 10% fetal bovine serum and penicillin / streptomycin (Thermo Fisher Scientific, France), were imaged

every 3 min for up to 24 hours in the temperature/CO2-controlled environmental chamber of a DeltaVision Elite microscope (GE

Healthcare Life Sciences, Velizy-Villacoublay, France), with a 20x objective (NA = 0.75) in transmitted light and using the following

solid-state illumination excitation wavelengths and single bandpass emission filters : for CFP (Ex. 438/24 nm / Em. 475-24 nm),

YFP (Ex. 513/17 nm / Em. 548/22 nm). In addition to the time-lapse runs, cells stably expressing our target proteins tagged with

mRFP1 or mCherry, were imaged at the beginning of the experiment for mCherry (Ex. 575/25 nm / Em. 625-45 nm).

Laser-Capture Microdissection
Right after a 50-minute live-cell microscopy, the reaction was stopped by replacing the FrameSlide cell media with PBS Ca2+/Mg2+

at 4dC, and non-contact laser capturemicrodissection was performedwith a Zeiss PALMMicroBeam (Carl Zeiss, France). Cells were

ranked based on their caspase-8 activation rates at 50 minutes, determined by live-cell microscopy image and signal analyses, to

select high and low responding cells, and their xy coordinates were converted to position the Zeiss RoboStage accordingly (using

scripts developed in house). Chosen single-cells were then catapulted into 0.2 ml domed caps tube (strips) containing 4.3 ml of lysis

buffer (0,2% w/v Tween 20, 1.5U/ml Promega RNAseIN Plus). Tubes were kept on ice and frozen in dry ice directly after collection to

minimize RNA degradation during sample collection and transport.
Cell Systems 11, 367–374.e1–e5, October 21, 2020 e3
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cDNA Preparation

Samples were thawed on ice and 2.43 ml of a mix containing 10,000 molecules Life Technologies ERCC spike-InMix 1, 2.5 mMdNTPs,

and 3.7 mMsingle barcoded reverse transcription primer (Table S4) was added to each tube, incubated for 10min at room temperature,

3 min at 70�C and cooled to 10�C. Immediately after lysis, 8.27 ml 1.8X reverse transcription buffer (Invitrogen), 4.53 mM DTT, 1.8M

Betaı̈ne, 10.8 mM MgCl2, 3.62 mM template switching oligonucleotide, 0.6 U/ml Promega RNAse IN Plus, 7.5 U/ml Invitrogen

SuperScript II reverse transcriptase were added and samples were reverse transcribed 10 min at 25�C, 90 min at 42�C, 15 min at

70�Candkeptat10�CuntilPCRamplification.SampleswerePCRamplified (KAPAHiFiHotstart) in31ml for 20cycleswith0.8mMforward

PCRprimer, 0.8 mMbiotinylated reverse PCRprimer (primer sequences in Table S5). Sampleswere incubated 3min at 98�C followedby

20 cycles at 98�C for 20 sec, 64�C for 15 sec, 72�C for 6 min followed by a final extension for 5 min at 72�C. After PCR amplification,

samples were pooled and purified with 0.8X Beckman Coulter SPRIselect beads, washed once with 85% EtOH and eluted in 30 ml.

Library Preparation

Batches of barcoded cDNAs were pooled, purified with SPRIselect beads (0.8x) and eluted in 12 ml. Nine ml (typically 10 – 20 ng of

cDNA) were used for tagmentation and Illumina library preparation as previously described (Arguel et al., 2017).

Sequencing

Libraries were sequenced with a NextSeq 500/550 High Output v2 kit (75 cycles) that allows up to 91 cycles with an index1 read of 20

nt. (8-bp cell barcode and 12 bp UMI) and a read1 of 71 nt. for cDNA sequencing, with custom sequencing primers as described in

(Arguel et al., 2017).

Droplet-based Single-Cell Sequencing
Single-Cell Preparation

Clonal HeLa cells stably expressing the FRET-based initiator caspase reporter (IC-RP) were cultured in 6-well plates for 24 hours and

then treated with TRAIL. Right after treatments, cells from each treatment conditions, were detached with trypsin (filtered, counted)

and incubated with Hashtag antibodies (Biolegend TotalSeq�, San Diego, CA) for 20 min at 4 dC. Live cells from each treatment

conditions were then counted and merged into one sample according to the manufacturer’s recommendations (10x Genomics,

Netherlands). Cell Hashing protocol with Hashtag oligonucleotide (HTO) was then conducted with 10x Genomics single-cell 3’ V2

chemistry to generate single-cell emulsion.

Single-Cell and Hashtag Oligo Sequencing

Single-cell RNA-seq was performed following manufacturer’s protocol (Chromium� Single Cell 3’ Reagent Kit, V2 Chemistry) to

obtain single cell 3’ libraries for Illumina sequencing. PCR of 12 cycles was performed for cDNA amplification with HTO primer

(Stoeckius et al., 2018). Final cDNA library was then pooled with 10% of HTO library in final pool for sequencing.

Libraries were sequenced with a NextSeq 500/550 High Output v2 kit (75 cycles) that allows up to 91 cycles of paired-end

sequencing: Read 1 had a length of 26 bases that included the cell barcode and the UMI; Read 2 had a length of 57 bases that con-

tained the cDNA insert; Index reads for sample index of 8 bases. Cell Ranger Single-Cell Software Suite v3.0.2 was used to perform

demultiplexing of individual cells, barcode processing and single-cell 30 gene counting using standards default parameters and

human build GRCh38.

Hashtag Library Preparation and Analysis

For HTO library preparation, 10 cycles of PCR amplification (Stoeckius et al., 2018) followed by a size selection with Blue Pippin 3%

agarose gel cassette (BDQ3010) Marker Q3 were necessary to select 180bp specific amplicon. We used the following sample

barcodes from BioLegend: A0251: GTCAACTCTTTAGCG, A0252: TGATGGCCTATTGGG, A0253: TTCCGCCTCTCTTTG, A0254:

AGTAAGTTCAGCGTA, A0255: AAGTATCGTTTCGCA. Antibody hashtags counting was done using CITE-seq-Count (Stoeckius

et al., 2017) using standard 10X Genomics parameters ‘‘-cbf 1 -cbl 16 -umif 17 -umil 26 -hd 2’’ and barcode ‘‘–whitelist’’ from Cell

Ranger analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Live-Cell Imaging Analyses
For the analysis of the FRET signal, the background-subtracted CFP and YFP images were divided to get a ratiometric image (CFP/

YFP) using ImageJ and customplug-ins to track cells (Albeck et al., 2008). Signals were normalized by subtracting theminimum value

across all time points from each single-cell time course and the average trajectory of the corresponding drug vehicle-treated cells.

Cell death times were determined by visual inspection, for each corresponding cell trajectory with the transmitted light image stacks

and used to determine population cell viability. Cell death assessment was performed by visual inspection in transmitted light of the

cell morphology change, cell death time was marked and used for cell death counts. Caspase-8 activation rates were determined

from CFP/YFP ratio trajectories, as described before (Roux et al., 2015).

Statistical Analyses on Live-Cell Experiments

Independent replicate numbers (n) are reported in the corresponding figure panels. Statistical significance of the difference in

maximal activation rates was assessed usingWilcoxon rank sum test, statistical significance of the surviving fractions in experiments

repeats was assessed using two-sample t-test, and Cell Survival probabilities (Empirical Survivor Function, ecdf) were compared

with a two-sample Kolmogorov-Smirnov test.
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Bioinformatics Analyses

Mapping of cDNA reads was performed using STAR against human hg19 build following encode RNA-seq recommendations (Dobin

et al., 2013). Drop-seq tools (Macosko et al., 2015) was then used to tag SAM records with cell barcode (XC) and molecule identifier

(XM) extracted from index1 reads. Gene name tag (GE) were also added using Drop-seq (TagReadWithGeneExon pipeline) and

Ensembl reference GRCh37.75 prior to digital expression count matrix production using an edit distance of 1 (DigitalExpression

pipeline).

Statistical Analyses
Exploratory analysis of single-cell RNA-seq data was performed for quality control. Poor quality cells, based on high dropout rate and

outlier total UMI counts (number of UMI < 40,000 or > 220,000), were excluded from the final dataset to avoid including damaged cells

and doublets that could not be detected during laser capture microdissection. Library size normalization and highly variable genes

selection were performed using the R package scran (Lun et al., 2016). Cell-cycle assessment was performed using the algorithm

described before (Macosko et al., 2015), based on our curated gene sets (Revinski et al., 2018). Hierarchical clustering and heatmaps

were generated using the R package pheatmap, using Euclidean distance andWard.D method unless otherwise specified. Differen-

tial analysis was performed using the edgeR likelihood ratio test framework (McCarthy et al., 2012). P-values were adjusted for mul-

tiple testing using the Benjamini-Hochberg method. Molecular function enrichment analyses were performed using Ingenuity

Pathway Analysis (IPA, QIAGEN Inc).

Droplet-based Single-Cell Analyses
Hashtag Demultiplexing and Preprocessing

Single-cell RNA-seq and hashtag data were analyzed using the R toolkit Seurat V3 (Stuart et al., 2019) and customR scripts. Hashtag

counts were normalized using theCLRmethod, then cell barcodeswere demultiplexed and doublet and negative cells were excluded

using the HTODemux function with parameter positive.quantile = 0.95. Low quality cells were excluded from the dataset based on

the following criteria: number of genes detected < 2,000, percentage of UMI mapping to mitochondrial genes > 5% or number of

UMIs < 10,000. The final numbers of cells included were: 1,529 for control sample, 1,481 for TRAIL 50 min 25 ng/ml, 1,631 for TRAIL

120 min 10 ng/ml, 1,804 for TRAIL 120 min 25 ng/ml and 2,115 for TRAIL 120 min 40 ng/ml. Cell cycle scores were calculated using

Seurat CellCycleScoring function, based on previously published gene sets (Revinski et al., 2018). Each sample was first normalized

to 10,000 UMIs, and variable features were selected using the vst method.

Analysis of Control and TRAIL 50-min Samples

Analysis of individual samples was performed using the standard Seurat workflow based on a number of PC = 10 and SNN/Louvain

clustering with resolution parameter res=0.3.

Integration of Control and Treated Samples

We used the Seurat V3 data integration pipeline to analyze all 5 samples together (Stuart et al., 2019). Integration was performed

based on the first 20 CCA dimensions, and a regression of the G2M, S scores and total number of RNA molecules was included

to remove the effects of cell cycle and sequencing depth. PCA was used as dimensionality reduction technique, and the number

of PCs to include in downstream analyses was set based on inspection of the elbow plot. A resolution of 0.1 was used for the

SNN/Louvain clustering. Significance of differential expression analysis between clusters or between experimental conditions

was performed usingWilcoxon Rank Sum test using the FindMarker function. MA-plot between experimental conditions were gener-

ated using average gene expression values estimated using the AverageExpression function.

Pseudo-Bulk Analysis

Two pseudo-bulk samples were constructed from each single cell sample by randomly selecting 700 cells (without replacement)

among all cells passing quality filter, then, we calculated the UMI count value for each gene by adding theUMIs counts corresponding

to this gene from these 700 cells. Statistical analysis of bulk samples was performed using the R package edgeR (McCarthy et al.,

2012). Library size differences normalization factors were calculated using the TMM method. Differential analysis was performed

using the likelihood ratio test. Pvalues were adjusted for multiple testing using the Benjamini-Hochberg method. Heatmaps were

generated using the R package pheatmap. Gene set enrichment analysis was performed using the package fgsea.

Transcriptional Noise Analysis

Raw single cell count data was used for this analysis. The following preprocessing was applied in order to account for differences in

sequencing depth for each cell and for differences in the number of single-cell captured for each sample. First, we started by

randomly selecting 1000 cells among all cells with at least 15,000 UMIs in each sample. Then, for each cell, the number of UMIs

was downsampled to 15,000 using the SampleUMI function in Seurat. For each sample, the transcriptional noise was measured

as 1- rho, where rho is the Spearman correlation coefficient between 2 cells, for all possible pairs of cells in this sample (Angelidis

et al., 2019).
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